HoW exciting! 2012 - Workshop (PSI-K)


The main goal of this tutorial is to introduce young scientists to the theoretical foundations of state-of-the-art first-principles techniques based on and going beyond densitiy-functional theory (DFT) through keynote lectures given by world-leading experts. On the same occasion, young scientist will have the opportunity to put this knowledge into practice through hands-on exercises with the software package.

Exciting is a young public-domain all-electron package based on DFT for the investigation of condensed matter on the atomic scale. It combines several major advantages: (i) It is a full-potential all-electron code based on the linearised augmented plane-wave (LAPW) method, which stands for highest precision and the fact that it can be used for any material. (ii) It is the only all-electron package comprising vast implementations of excited-state properties within TDDFT as well as many-body perturbation theory. (iii) It is developer-friendly through a clean and fully documented programming style, being written from scratch and handled with a modern version-control system (git). (iv) It is user-friendly through an easy-to-handle user interface comprising various tools to create and validate input files and analyse results. (v) It is seminal by being interfaced to packages operating on the next higher length scale and by the development of tools which allow for the handling by users from an industrial environment. Each of the presented topic will be treated in a twofold way: introducing the general concepts, as well as presenting applications to real materials. We will focus on the treatment of various excitations, crucial to understand and predict electronic, optical, and lattice-dynamical properties of materials.

Principal investigators
Draxl, Claudia Prof. Dr. Dr. h.c. (Details) (Theoretical Physics / Solid State Theory)

Financer
Sonstige internationale öffentliche Mittelgeber

Duration of project
Start date: 06/2012
End date: 12/2013

Last updated on 2022-08-09 at 15:08