Theoretical Analysis of Hippocampal Memory Formation


The hippocampus is engaged in remembering information that can be described in a declarative manner, and work on the function of the hippocampus has led to the development of current concepts about the organization of memory systems in the brain. Because the hippocampus stores information only temporarily, memory consolidation is required to transfer memories from the hippocampus to the neocortex, which has a larger capacity and a longer memory lifetime. However, basic cellular mechanisms underlying the storage and transfer of memories are unknown. Previous own work on the hippocampus focussed on encoding (Thurley et al. 2008, Schmidt et al. 2009), plasticity (Gundlfinger et al. 2007, Leibold et al. 2008), and memory capacity (Leibold and Kempter 2006, 2008). To further understand basic modes of operation of the hippocampus and its interaction with neocortex, we will study models of memory storage and memory consolidation. In close cooperation with experimental groups, we will model and analyze cellular mechanisms underlying memory transfer across subregions of the brain.


Principal Investigators
Kempter, Richard Prof. Dr. (Details) (Computational Neuroscience)

Duration of Project
Start date: 06/2010
End date: 06/2017

Publications
http://itb.biologie.hu-berlin.de/~kempter/Publications/

M. Michalikova, M. Remme, D. Schmitz, S. Schreiber, R. Kempter. Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications.
Rev. Neurosci., 10.1515/revneuro-2019-0044.

T. McColgan, P.T. Kuokkanen, C.E. Carr, R. Kempter. Dynamics of synaptic extracellular field potentials in the nucleus laminaris of the barn owl. J. Neurophysiol., 121:1034-1047, 2019.

A. Holzbecher, R. Kempter. Interneuronal gap junctions increase synchrony and robustness of hippocampal ripple oscillations. Eur. J. Neurosci., 48: 3446-3465, 2018.

M. Michalikova, M. Remme, R. Kempter. Extracellular waveforms reveal an axonal origin of spikelets in pyramidal neurons. J. Neurophysiol., 120: 1484-1495, 2018.

J.R. Donoso, D. Schmitz, N. Maier*, R. Kempter* (*co-last authors) Hippocampal ripple oscillations and inhibition-first network models: frequency dynamics and response to GABA modulators. J. Neurosci., 38: 3124-3146, 2018.

P.T. Kuokkanen, G. Ashida, A. Kraemer, T. McColgan, K. Funabiki, H. Wagner, C. Koeppl, C.E. Carr, R. Kempter. Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl. J. Neurophysiol., 119: 1422-1436, 2018.

T. McColgan, J. Liu, P.T. Kuokkanen, C.E. Carr, H. Wagner, R. Kempter. Dipolar extracellular potentials generated by axonal projections. eLife 2017;6:e26106.

B. Telenczuk, R. Kempter, G. Curio, A. Destexhe. Refractoriness accounts for variable spike burst responses in somatosensory cortex. eNeuro.0173-17.2017.

J. Winterer, N. Maier, C. Wozny, P. Beed, J. Breustedt, R. Evangelista, Y. Peng, T. D'Albis, R. Kempter, D. Schmitz. Excitatory microcircuits within superficial layers of the medial entorhinal cortex. Cell Reports, 19(6):1110-1116, 2017.

J. Jaramillo and R. Kempter. Phase precession: a neural code underlying episodic memory? Curr. Opin. Neurobiol., 43:130-138, 2017.

M. Michalikova, M. Remme, R. Kempter. Spikelets in pyramidal neurons: Action potentials initiated in the axon initial segment that do not activate the soma. PLoS Comput. Biol., 13(1): e1005237, 2017.

N. Chenkov, H. Sprekeler, R. Kempter. Memory replay in balanced recurrent networks.PLoS Comput. Biol., 13(1): e1005359, 2017.

T. D'Albis, R. Kempter. A single-cell spiking model for the origin of grid-cell patterns.PLoS Comput. Biol., 13(10): e1005782, 2017.

C. L. Ebbesen, E. T. Reifenstein, Q. Tang, A. Burgalossi, S. Ray, S. Schreiber, R. Kempter, M. Brecht Cell type-specific differences in spike timing and spike shape in rat parasubiculum and superficial medial entorhinal cortex. Cell Reports, 16: 1-11, 2016.

E. T. Reifenstein, C. L. Ebbesen, Q. Tang, M. Brecht, S. Schreiber, and R. Kempter Cell-type specific phase precession in layer II of the medial entorhinal cortex. J. Neurosci. 36:2283-2288, 2016.

C. E. Carr, G. Ashida, H. Wagner, T. McColgan, R. Kempter. The role of conduction delay in creating sensitivity to interaural time differences. In P. van Dijk et al. (eds.), Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing, Advances in Experimental Medicine and Biology 894, 2016.

C. E. Carr, S. Shah, T. McColgan, G. Ashida, P. T. Kuokkanen, S. Brill, R. Kempter, H. Wagner. Maps of interaural delay in the owl's nucleus laminaris. J. Neurophysiol. 114:1862-1873, 2015.

T. D'Albis, J. Jaramillo, H. Sprekeler, R. Kempter. Inheritance of hippocampal place fields through Hebbian learning: the effects of theta modulation and phase precession. Neural Computation 27: 1624-1672, 2015.

B. Telenczuk, S. Baker, R. Kempter, G. Curio. Correlates of a single cortical action potential in the the epidural EEG. NeuroImage 109: 357-367, 2015. doi:10.1016/j.neuroimage.2014.12.057

P. Ritter, J. Born, M. Brecht, H. Dinse, U. Heinemann, B. Pleger, D. Schmitz, S. Schreiber, A. Villringer, R. Kempter. State-dependencies of learning across brain scales. Front. Comput. Neurosci. 9:1, 2015. doi:10.3389/fncom.2015.00001

J. Jaramillo, R. Schmidt, R. Kempter.Modeling inheritance of phase precession in the hippocampal formation.
J. Neurosci., 34: 7715-7731, 2014.

P. T. Kuokkanen, G. Ashida, C. E. Carr, H. Wagner, R. Kempter. Linear summation in the barn owl's brainstem underlies responses to interaural time differences. J. Neurophysiol., 110: 117-130, 2013.

U. Bergmann, M. Remme, S. Schreiber, H. Sprekeler, and R. Kempter A cellular mechanism for system memory consolidation. Computational and Systems Neuroscience (COSYNE) II-37, 2013.

C.E. Carr, S. Shah, G. Ashida, T. McColgan, H. Wagner, P.T. Kuokkanen, R. Kempter, and C. Koeppl. Maps of ITD in the nucleus laminaris of the barn owl. Adv. Exp. Med. Biol., 787: 215-212, 2013.

G. Ashida, K. Funabiki, P. T. Kuokkanen, R. Kempter, C. E. Carr. Signal-to-noise ratio in the membrane potential of the owl's auditory coincidence detectors. J. Neurophysiol. 108:2837-2845, 2012.

R. Schaette, R. Kempter. Computational models of neurophysiological correlates of tinnitus.
Front. Syst. Neurosci. 6(34):1-10, 2012. doi: 10.3389/fnsys.2012.00034

E. T. Reifenstein, R. Kempter, S. Schreiber, M. B. Stemmler, A. V. M. Herz Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level. Proc. Natl. Acad. Sci. USA 109:6301-6306, 2012.

E. T. Reifenstein, R. Kempter, S. Schreiber, M. B. Stemmler, A. V. M. Herz Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level. Proc. Natl. Acad. Sci. USA 109:6301-6306, 2012.

Last updated on 2020-11-11 at 10:46